Cursos de TensorFlow

TensorFlow Training

TensorFlow is an open source software library for deep learning.

Testimonios de los Clientes

Neural Networks Fundamentals using TensorFlow as Example

Topic selection. Style of training. Practice orientation

Commerzbank AG

Neural Networks Fundamentals using TensorFlow as Example

Knowledgeable trainer

Sridhar Voorakkara - INTEL R&D IRELAND LIMITED

Neural Networks Fundamentals using TensorFlow as Example

Very good all round overview.Good background into why Tensorflow operates as it does.

Kieran Conboy - INTEL R&D IRELAND LIMITED

Neural Networks Fundamentals using TensorFlow as Example

Topic selection. Style of training. Practice orientation

Commerzbank AG

TensorFlow for Image Recognition

Very updated approach or api (tensorflow, kera, tflearn) to do machine learning

Paul Lee - Hong Kong Productivity Council

Neural Networks Fundamentals using TensorFlow as Example

I was amazed at the standard of this class - I would say that it was university standard.

David Relihan - INTEL R&D IRELAND LIMITED

Neural Networks Fundamentals using TensorFlow as Example

Given outlook of the technology: what technology/process might become more important in the future; see, what the technology can be used for

Commerzbank AG

Neural Networks Fundamentals using TensorFlow as Example

I liked the opportunities to ask questions and get more in depth explanations of the theory.

Sharon Ruane - INTEL R&D IRELAND LIMITED

Programas de los Cursos de TensorFlow

Código Nombre Duración Información General
tf101 Aprendizaje Profundo con TensorFlow 21 horas TensorFlow es una API de segunda generación de la biblioteca de software de código abierto de Google para Deep Learning. El sistema está diseñado para facilitar la investigación en aprendizaje de máquina, y para hacer rápida y fácil la transición del prototipo de investigación al sistema de producción. Audiencia Este curso está dirigido a ingenieros que buscan usar TensorFlow para sus proyectos de Aprendizaje Profundo Después de completar este curso, los delegados: entender la estructura y los mecanismos de despliegue de TensorFlow ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración ser capaz de evaluar la calidad del código, realizar depuración, ser capaz de implementar producción avanzada como los modelos de entrenamiento, la construcción de gráficos y registro
tfir TensorFlow para Reconocimiento de Imágenes 28 horas Este curso explora, con ejemplos específicos, la aplicación de Flujo Tensor a los propósitos de reconocimiento de imagen Audiencia Este curso está dirigido a ingenieros que buscan utilizar TensorFlow para los propósitos de reconocimiento de imágenes Después de completar este curso, los delegados podrán: entender la estructura y los mecanismos de despliegue de TensorFlow llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración evaluar la calidad del código, realizar depuración, monitoreo implementar la producción avanzada como modelos de formación, creación de gráficos y registro
dlv Aprendizaje Profundo para Vision 21 horas Audiencia Este curso es adecuado para los investigadores e ingenieros de Deep Learning interesados en utilizar las herramientas disponibles (en su mayoría de código abierto) para analizar imágenes de computadora Este curso proporciona ejemplos prácticos.
Neuralnettf Fundamentos de Redes Neuronales Usando TensorFlow como Ejemplo 28 horas Este curso le proporcionará conocimientos en redes neuronales y, en general, en algoritmos de aprendizaje automático, aprendizaje profundo (algoritmos y aplicaciones). Este entrenamiento se enfoca más en los fundamentos, pero lo ayudará a elegir la tecnología adecuada: TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. Los ejemplos están hechos en TensorFlow.
tsflw2v Procesamiento del Lenguaje Natural con TensorFlow 35 horas TensorFlow ™ es una biblioteca de software de código abierto para computación numérica utilizando gráficos de flujo de datos. SyntaxNet es una estructura de procesamiento de lenguaje natural de la red neuronal para TensorFlow. Word2Vec se utiliza para el aprendizaje de representaciones vectoriales de palabras, llamadas "embeddings palabra". Word2vec es un modelo predictivo particularmente computacionalmente eficiente para aprender las incorporaciones de palabras a partir de texto en bruto. Viene en dos sabores, el modelo continuo de la bolsa-de-palabras (CBOW) y el modelo de Skip-Gram (capítulo 3.1 y 3.2 en Mikolov y otros). Utilizado en tándem, SyntaxNet y Word2Vec permite a los usuarios generar modelos de incorporación aprendida de entrada de lenguaje natural. Audiencia Este curso está dirigido a desarrolladores e ingenieros que tienen la intención de trabajar con los modelos SyntaxNet y Word2Vec en sus gráficos TensorFlow. Después de completar este curso, los delegados: Entender la estructura y los mecanismos de despliegue de TensorFlow ser capaz de llevar a cabo las tareas de instalación / producción de entorno / arquitectura y configuración ser capaz de evaluar la calidad del código, realizar depuración, ser capaz de implementar la producción avanzada como modelos de entrenamiento, términos de inclusión, gráficos de construcción y registro
datamodeling Reconocimiento de Patrones 35 horas Este curso proporciona una introducción en el campo del reconocimiento de patrones y el aprendizaje automático. Se trata de aplicaciones prácticas en estadística, informática, procesamiento de señales, visión por computadora, minería de datos y bioinformática. El curso es interactivo e incluye muchos ejercicios prácticos, comentarios de los instructores y pruebas de los conocimientos y habilidades adquiridos. Audiencia      Analistas de datos      Estudiantes de doctorado, investigadores y profesionales
tpuprogramming TPU Programming: Building Neural Network Applications on Tensor Processing Units 7 horas The Tensor Processing Unit (TPU) is the architecture which Google has used internally for several years, and is just now becoming available for use by the general public. It includes several optimizations specifically for use in neural networks, including streamlined matrix multiplication, and 8-bit integers instead of 16-bit in order to return appropriate levels of precision. In this instructor-led, live training, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications. By the end of the training, participants will be able to: Train various types of neural networks on large amounts of data Use TPUs to speed up the inference process by up to two orders of magnitude Utilize TPUs to process intensive applications such as image search, cloud vision and photos Audience Developers Researchers Engineers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
embeddingprojector Embedding Projector: Visualizing your Training Data 14 horas Embedding Projector is an open-source web application for visualizing the data used to train machine learning systems. Created by Google, it is part of TensorFlow. This instructor-led, live training introduces the concepts behind Embedding Projector and walks participants through the setup of a demo project. By the end of this training, participants will be able to: Explore how data is being interpreted by machine learning models Navigate through 3D and 2D views of data to understand how a machine learning algorithm interprets it Understand the concepts behind Embeddings and their role in representing mathematical vectors for images, words and numerals. Explore the properties of a specific embedding to understand the behavior of a model Apply Embedding Project to real-world use cases such building a song recommendation system for music lovers Audience Developers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
tensorflowserving TensorFlow Serving 7 horas TensorFlow Serving is a system for serving machine learning (ML) models to production. In this instructor-led, live training, participants will learn how to configure and use TensorFlow Serving to deploy and manage ML models in a production environment. By the end of this training, participants will be able to: Train, export and serve various TensorFlow models Test and deploy algorithms using a single architecture and set of APIs Extend TensorFlow Serving to serve other types of models beyond TensorFlow models Audience Developers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
mlbankingr Machine Learning for Banking (with R) 28 horas In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry. R will be used as the programming language. Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of live projects. Audience Developers Data scientists Banking professionals with a technical background Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
mlbankingpython_ Machine Learning for Banking (with Python) 21 horas In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry. Python will be used as the programming language. Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects. Audience Developers Data scientists Format of the course Part lecture, part discussion, exercises and heavy hands-on practice
undnn Understanding Deep Neural Networks 35 horas This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications). Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc. Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy. Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow. Audience This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects After completing this course, delegates will: have a good understanding on deep neural networks(DNN), CNN and RNN understand TensorFlow’s structure and deployment mechanisms be able to carry out installation / production environment / architecture tasks and configuration be able to assess code quality, perform debugging, monitoring be able to implement advanced production like training models, building graphs and logging   Not all the topics would be covered in a public classroom with 35 hours duration due to the vastness of the subject. The Duration of the complete course will be around 70 hours and not 35 hours.
dlfornlp Deep Learning for NLP (Natural Language Processing) 28 horas Deep Learning for NLP allows a machine to learn simple to complex language processing. Among the tasks currently possible are language translation and caption generation for photos. DL (Deep Learning) is a subset of ML (Machine Learning). Python is a popular programming language that contains libraries for Deep Learning for NLP. In this instructor-led, live training, participants will learn to use Python libraries for NLP (Natural Language Processing) as they create an application that processes a set of pictures and generates captions.  By the end of this training, participants will be able to: Design and code DL for NLP using Python libraries Create Python code that reads a substantially huge collection of pictures and generates keywords Create Python Code that generates captions from the detected keywords Audience Programmers with interest in linguistics Programmers who seek an understanding of NLP (Natural Language Processing)  Format of the course Part lecture, part discussion, exercises and heavy hands-on practice

Próximos Cursos

CursoFechaPrecio del Curso [A distancia / Presencial]
Aprendizaje Profundo con TensorFlow - Buenos Aires - Laminar CatalinasLun, 2018-02-19 09:305259USD / 25291USD

Otras regiones

Cursos de Fin de Semana de TensorFlow, Capacitación por la Tarde de TensorFlow, TensorFlow boot camp, Clases de TensorFlow , Cursos de Formación de TensorFlow, TensorFlow coaching, Clases Particulares de TensorFlow, Capacitador de TensorFlow, Programas de capacitación de TensorFlow, Capacitación empresarial de TensorFlow, Clases de TensorFlow , Cursos Privados de TensorFlow, TensorFlow con instructor, Instructor de TensorFlow, Cursos por la Tarde de TensorFlow, Talleres para empresas de TensorFlow,Capacitación de Fin de Semana de TensorFlow, Cursos en linea de TensorFlow

Promociones

Descuentos en los Cursos

Respetamos la privacidad de su dirección de correo electrónico. No transmitiremos ni venderemos su dirección a otras personas.
Siempre puede cambiar sus preferencias o cancelar su suscripción por completo.

Algunos de nuestros clientes